40 research outputs found

    Deep Interference Mitigation and Denoising of Real-World FMCW Radar Signals

    Full text link
    Radar sensors are crucial for environment perception of driver assistance systems as well as autonomous cars. Key performance factors are a fine range resolution and the possibility to directly measure velocity. With a rising number of radar sensors and the so far unregulated automotive radar frequency band, mutual interference is inevitable and must be dealt with. Sensors must be capable of detecting, or even mitigating the harmful effects of interference, which include a decreased detection sensitivity. In this paper, we evaluate a Convolutional Neural Network (CNN)-based approach for interference mitigation on real-world radar measurements. We combine real measurements with simulated interference in order to create input-output data suitable for training the model. We analyze the performance to model complexity relation on simulated and measurement data, based on an extensive parameter search. Further, a finite sample size performance comparison shows the effectiveness of the model trained on either simulated or real data as well as for transfer learning. A comparative performance analysis with the state of the art emphasizes the potential of CNN-based models for interference mitigation and denoising of real-world measurements, also considering resource constraints of the hardware.Comment: 2020 IEEE International Radar Conference (RADAR

    Supplementation of a western diet with golden kiwifruits (Actinidia chinensis var.'Hort 16A':) effects on biomarkers of oxidation damage and antioxidant protection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The health positive effects of diets high in fruits and vegetables are generally not replicated in supplementation trials with isolated antioxidants and vitamins, and as a consequence the emphasis of chronic disease prevention has shifted to whole foods and whole food products.</p> <p>Methods</p> <p>We carried out a human intervention trial with the golden kiwifruit, Actinidia chinensis, measuring markers of antioxidant status, DNA stability, plasma lipids, and platelet aggregation. Our hypothesis was that supplementation of a normal diet with kiwifruits would have an effect on biomarkers of oxidative status. Healthy volunteers supplemented a normal diet with either one or two golden kiwifruits per day in a cross-over study lasting 2 × 4 weeks. Plasma levels of vitamin C, and carotenoids, and the ferric reducing activity of plasma (FRAP) were measured. Malondialdehyde was assessed as a biomarker of lipid oxidation. Effects on DNA damage in circulating lymphocytes were estimated using the comet assay with enzyme modification to measure specific lesions; another modification allowed estimation of DNA repair.</p> <p>Results</p> <p>Plasma vitamin C increased after supplementation as did resistance towards H<sub>2</sub>O<sub>2</sub>-induced DNA damage. Purine oxidation in lymphocyte DNA decreased significantly after one kiwifruit per day, pyrimidine oxidation decreased after two fruits per day. Neither DNA base excision nor nucleotide excision repair was influenced by kiwifruit consumption. Malondialdehyde was not affected, but plasma triglycerides decreased. Whole blood platelet aggregation was decreased by kiwifruit supplementation.</p> <p>Conclusion</p> <p>Golden kiwifruit consumption strengthens resistance towards endogenous oxidative damage.</p
    corecore